

DK-003-001402

Seat No.

B. Sc. (Sem. IV) Examination

April / **May** - **2015**

Physics: Paper - 401

Faculty Code: 003

Subject Code: 001402

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions:(1) Write MCQ answers in main answer book.

- (2) All questions are Compulsory.
- (3) Symbols have their usual meaning.
- (4) Marks of each question are indicated on righ side.

SECTION - A

1 Choose the correct option for the following MCQs:

20

- (1) When light is refracted, which of the following does not change ?
 - (a) wavelength
- (b) frequency
- (c) velocity
- (d) amplitude
- (2) The focal length of a zone plate is given by the relation.
 - (a) $f = \frac{r_n^2}{n\lambda^2}$
- (b) $f = \frac{r_n}{n\lambda}$
- (c) $f = \frac{r_n^2}{n\lambda}$
- (d) $f = \frac{r_n^2}{n^2 \lambda}$
- (3) A grating having constant 0.0003, what is the wavelength of line situated at a diffraction angle 30°?
 - (a) $6840 \stackrel{\circ}{A}$
- (b) 8000 Å
- (c) $10000 \stackrel{\circ}{A}$
- (d) 15000 Å

(4)	Which of the following is not a property of laser?								
, ,	(a) directionality								
	(b) monochromaticity								
	(c) coherence								
	(d) spreading of light in all directions								
(5)	To increase stimulated emission must be								
	large.								
	(a) $B_{21}/A_{12} \& \rho(f)$ (b) $A_{21}/B_{12} \& \rho(f)$								
	(c) $B_{21}/A_{21} \& \rho(f)$ (d) $B_{12}/A_{21} \& \rho(f)$								
(6)	In Nd-YAG laser, is the active centre.								
	(a) Nd^{+3} (b) AI^{+3}								
	(c) Cr^{+3} (d) Y^{+3}								
(7)	What is the equation of numerical aperture?								
	(a) $NA = n_2 \sqrt{2\Delta}$ (b) $NA = n_1 \sqrt{\Delta}$								
	(c) $NA = n_2 \sqrt{\Delta}$ (d) $NA = n_1 \sqrt{2\Delta}$								
(8)	According to distribution of refractive index, multimode								
	fibres are classified into types.								
	(a) one (b) two								
	(c) three (d) four								
(9)	The operating frequency of a Wein bridge								
	oscillator is								
	1 1								
	(a) $\frac{1}{2\pi\sqrt{LC}}$ (b) $\frac{1}{4\pi\sqrt{LC}}$								
	(c) $\frac{1}{2\pi RC}$ (d) $\frac{1}{29RC}$								

(10)	In Colpitt's oscillator, feedback is obtained					
	(a)	by tickler coil				
	(b)	from the centre of	split	capacitor		
	(c)	by magnetic induc	tion			
	(d)	none of the above				
(11)	In frequency modulation, the of the carrier is varied according to strength of the signal.					
	(a)	amplitude	(b)	phase		
	(c)	frequency	(d)	magnitude		
(12)	When signal amplitude is half than that of carrier amplitude, the amplitude of modulated wave varies between					
	(a)	3A/2 to $A/2$	(b)	2A to A		
	(c)	A to $\frac{A}{2}$	(d)	2A to Zero		
(13)	Sup	erheterodyne princi	ple re	efers to		
	(a)	using a large num	ber o	of amplifier stages		
	(b)	using a push pull	circu	it		
	(c)	obtaining lower fix	ed in	termediate frequency		
	(d)	none of the above.				
(14)	A gain of JFET is characterized by					
	(a)	current gain	(b)	voltage gain		
	(c)	power gain	(d)	transconductance		
DK-003-001402]			3		[Contd	

(15)	A MOSFET can be operated with						
	(a)	nly					
	(b)	(b) positive gate voltage only					
	(c)	(c) negative as well as positive gate voltage					
	(d)	(d) zero gate voltage					
(16)	The	intrinsic stand off	ratio (n) of UJT is given by			
	(a)	$R_{B_1} + R_{B_2}$	(b)	$\frac{R_{B_1}}{R_{B_1} + R_{B_2}}$			
	(c)	$\frac{R_{B_1} + R_{B_2}}{R_{B_1}}$	(d)	$\frac{R_{B_1} + R_{B_2}}{R_{B_2}}$			
(17)	A ci	rcuit which conver	ts bin	ary to decimal is known			
	as _	<u> </u> .					
	(a)	decoder	(b)	encoder			
	(c)	modulator	(d)	regulator			
(18)	Acco	ording to DeMorgar	n's the	eorem, $\overline{A \cdot B} = ?$			
	(a)	$\overline{A} \bullet \overline{B}$	(b)	$\overline{A} - \overline{B}$			
	(c)	$\overline{B} \bullet \overline{A}$	(d)	$\overline{A} + \overline{B}$			
(19)				nt and back polarisers are			
	plac	ed at	to each.				
	(a)	90°	(b)	180°			
	(c)	270°	(d)	360°			
DK-003-001402]			4	[Contd			

	(20)	In LDR the electrons are excited by as well as					
		(a)	protons, pressure				
		(b)	neutrons, temperature				
		(c)	photons, temperature				
		(d)	none of these				
2	(A)	Ans	wer the following questions in short: (any three)	6			
		(1)	Write difference between Fresnel diffraction and Fraunhoffer diffraction (at least two)				
		(2)	Define transmission grating.				
		(3)	What is metastable states?				
		(4)	Define population inversion in semiconductors.				
		(5)	Define numerical aperture for fibre.				
		(6)	What is LC oscillator ?				
	(B)	Ans	wer the following questions (any three)	9			
		(1)	Write the comparision between zone plate and convex lens.				
		(2)	A zone plate has a focal length of 80 cm at a wavelength 6000 \mathring{A} ; what is its focal length at λ = 8000 \mathring{A} .				
		(3)	Explain optical resonance cavity.				
		(4)	Explain the condition for stimulated emission to dominate spontaneous emission.				
		(5)	Describe step index multimode fibre.				
		(6)	Describe the Barkhausen criterion.				

- (C) Answer the following questions in detail: (any two) 10
 - (1) Describe Fresnel's explanation of the rectilinear propagation of light.
 - (2) Derive Einstein relation between Einstein co-efficients.
 - (3) Explain the principle and working of He-Ne laser.
 - (4) What is acceptance angle for an optical fibre? Derive its expression.
 - (5) Explain the construction and working of Weinbridge oscillator.
- 3 (A) Answer the following questions in short: (any three) 6
 - (1) Explain essentials in demodulation.
 - (2) For a given JFET if a-c drain resistance is 30 k Ω and transconductance is 3000 μ mho then what will be the value of amplification factor ?
 - (3) Write short note on "Thermistor".
 - (4) Convert the decimal number $(23)_{10}$ in to binary.
 - (5) Define NOR gate.
 - (6) Draw the symbols of phototransistor and solar cell.
 - (B) Answer the following questions: (any three)
 - (1) Explain the working of a transistor amplitude modulator.
 - (2) Define parameters of JFET.
 - (3) Explain the function of AND gate with its circuit, symbol and truth table.

9

- (4) Prove that $AB + \overline{AC} + A\overline{BC} (AB + C) = 1$ with the help of truth table.
- (5) Explain the function of phototransistor with its characteristics.
- (6) Explain the action of LDR.
- (C) Answer the following questions in detail: (any two) 10
 - (1) What is demodulation? Explain AM diode detector in detail.
 - (2) Write short notes on:
 - (a) Straight radio receiver.
 - (b) Superheterodyne receiver.
 - (3) Explain construction and working of UJT
 - (4) Discuss encoder and decoder in detail.
 - (5) Prove that NAND gate as universal gate.

7

DK-003-001402]